Eperimental modeling: learning models from data a user point of view

Mario Milanese

Dip. di Automatica e Informatica Politecnico di Torino

The Logic of Modeling Alta Scuola Politecnica Milano, April 21, 2006

Outline

- Models as tools for making inferences from system data prediction, simulation, control, filtering, fault detection
- Model structures

physical law based, input-output description, linear, nonlinear

Model estimation

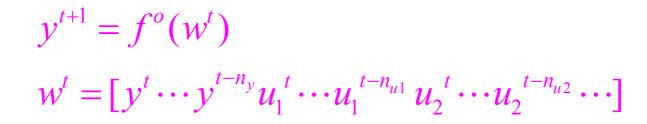
statistical/parametric, set membership, structured

- Model quality evaluation (vs. model validation)
- Application examples
 - ✓ Prediction of atmospheric pollution
 - ✓ Simulation of dam crest dynamics
 - ✓ Identification of vehicles with controlled suspensions

Regression form of system representation

System S^o produces output signal y when driven by input signal u :

Output y is related to input u
 by the regression function f^o:



Regression form of system representation

• Linear system $\longrightarrow f^o$ is linear in W^l :

$$y^{t+1} = a_o y^t + a_1 y^{t-1} \dots + a_{n_y} y^{t-n_y} + b_o u^t + b_1 u^{t-1} \dots + b_{n_u} u^{t-n_u}$$

ARMA system

If n_y=0 : MA (FIR) system

■ If n_u=0 : AR system

If f o nonlinear : NARMA, NFIR, NAR systems

Making inferences from data

■ It is desired to make an inference on system *S*^o :

prediction, identification, simulation, control, filtering, fault detection

The system S^o is unknown, but a finite number of noise corrupted measurements of y^t, w^t are available:

 $\tilde{y}^{t+1} = f^o(\tilde{w}^t) + d^t, \quad t = 1, \cdots, T$ *dt* accounts for errors in data \tilde{y}^t, \tilde{w}^t

• The inference is described by the operator $I(f^o, w^T)$

> one-step prediction \longrightarrow $I(f^o, w^T) = f^o(w^T)$

> identification

 $\longrightarrow I(f^{o}, w^{T}) = f^{o}$

Making inferences from data

Problems :

- *for given estimates* f̂ ≃ f°, ŵ^T ≃ w^T
 evaluate the inference error ||I(f°, w^T) − I(f̂, ŵ^T)||
 find estimates f̂ ≃ f°, ŵ^T ≃ w^T
 "minimizing" the inference error
- The inference error cannot be exactly evaluated since f^o and w^T are not known

Need of prior assumptions on *f*^o and *d*^t for deriving finite bounds on inference error

Model structures

• The model is described by:

 $\widetilde{y}^{t+1} = f(\widetilde{w}^t) + d^t$ $\widetilde{w}^t = [\widetilde{y}^t \cdots \widetilde{y}^{t-n_y} \widetilde{u}_1^t \cdots \widetilde{u}_1^{t-n_{u_1}} \widetilde{u}_2^t \cdots \widetilde{u}_2^{t-n_{u_2}} \cdots]$

Model structure is defined by:

- > type of function f
- type of noise d
- > which inputs u_1, u_2, \ldots
- > lag values n_y , n_{u1} , n_{u2} ,...

Statistical/parametric approach Model structures

Typical assumptions in literature:

- > on system: $f^{o} \in F(\theta) = \left\{ f(w,\theta) = \sum_{i=1}^{r} \alpha_{i} \sigma_{i}(w,\beta_{i}) \right\}$ known lag values $n_{y}, n_{u1}, n_{u2}, \dots$
- on noise: iid stochastic noise
- Functional form of **F**(*θ*) required:
 - > derived from physical laws
 - σ_i: "basis" function (polynomial, sigmoid,..)

Statistical/parametric approach Model structures

- If possible, physical laws are used to obtain the parametric representation of $f(w, \theta)$
- When the physical laws are not well known or too complex, input-output parameterizations are used

"Fixed" basis parametrization Polinomial, trigonometric, etc. "Tunable" basis parametrization Neural networks, wawelets , etc.

often called black-box models

Statistical/parametric approach Model structures: "fixed" basis

$$f(w,\theta) = \sum_{i=1}^{r} \alpha_i \sigma_i(w) \qquad \theta = [\alpha_1 \cdots \alpha_r]'$$
$$\sigma_i(w): "Basis"$$

Problem: Can σ_i 's be found such that

$$f(w,\theta) \xrightarrow[r \to \infty]{} f^{o}(w)$$
 ?

Statistical/parametric approach Model structures: "fixed" basis

For continuous f^o , bounded $W \subset \Re^n$ and σ_i polynomial of degree *i* (Weierstrass):

$$\lim_{r \to \infty} \sup_{w \in W} \left| f^o(w) - f(w,\theta) \right| = 0$$

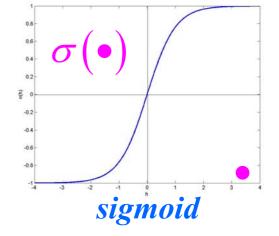
Polynomial NARX models

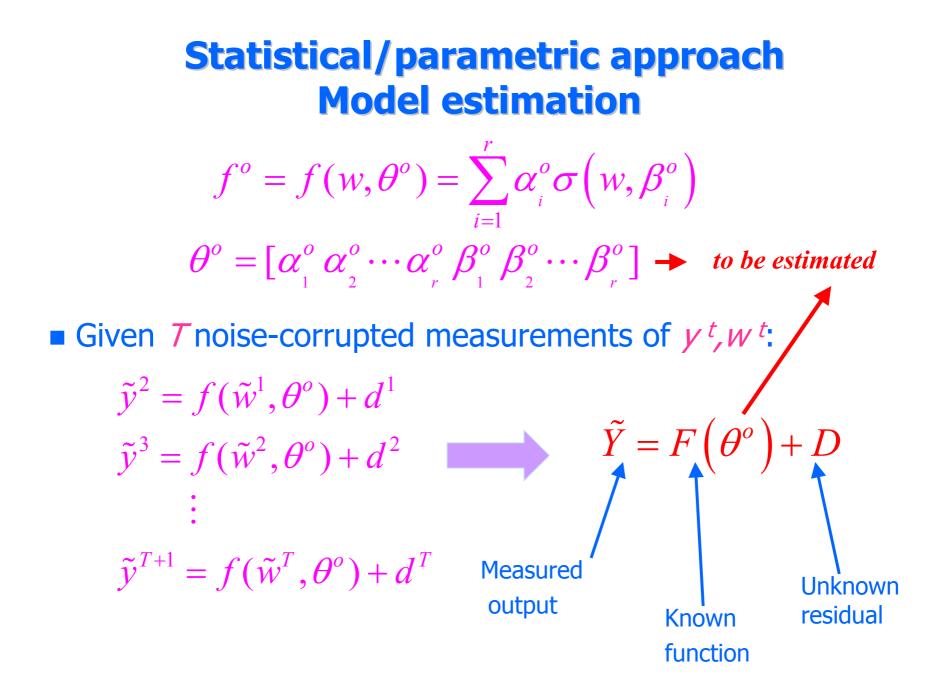
Statistical/parametric approach Model structures: "tunable" basis

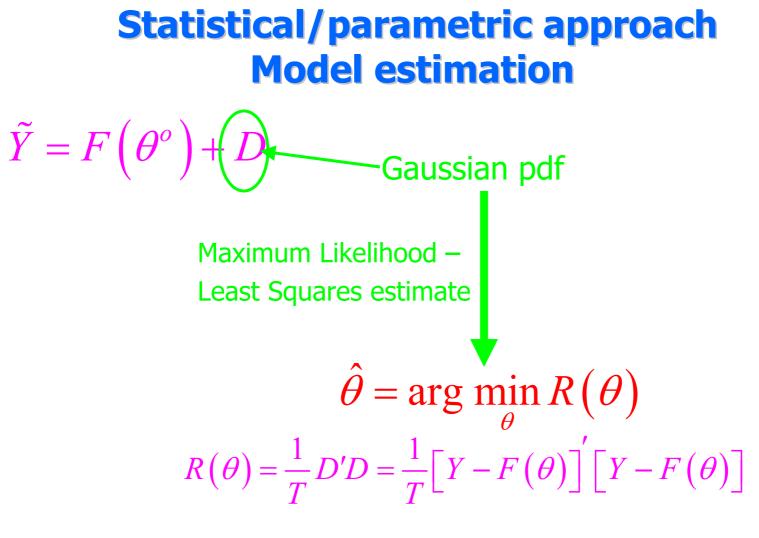
$$f(w,\theta) = \sum_{i=1}^{r} \alpha_{i} \sigma(w,\beta_{i})$$
$$\theta = \left[\alpha_{1} \cdots \alpha_{r} \beta_{11} \cdots \beta_{rq}\right]', \quad \beta_{i} \in \Re^{q}$$

One of the most common "tunable" parameterization is the one-hidden layer sigmoidal neural network

$$\sigma(w,\beta_i) = \sigma(w^T a_i + b_i) -$$







Problem: *R*(*θ*) is in general non-convex

_

Statistical/parametric approach Model estimation

"Fixed" basis:
$$f(w,\theta) = \sum_{i=1}^{r} \alpha_i \sigma_i(w) \qquad \theta = [\alpha_1 \cdots \alpha_r]'$$

Estimation of θ is a linear problem:

$$\tilde{Y} = L\theta^o + D$$

$$L = \begin{bmatrix} \sigma_1(\tilde{w}_1) & \cdots & \sigma_r(\tilde{w}_1) \\ \vdots & \ddots & \vdots \\ \sigma_1(\tilde{w}_T) & \cdots & \sigma_r(\tilde{w}_T) \end{bmatrix} \qquad Y = \begin{bmatrix} \tilde{y}^2 \ \tilde{y}^3 \cdots \tilde{y}^{T+1} \end{bmatrix}'$$

• If *D* is iid gaussian:

$$\hat{\theta}^{ML} = \left(L'L\right)^{-1}L'Y$$

Statistical/parametric approach Estimation accuracy

• For fixed basis and *D* iid gaussian:

$$\left| \mathcal{G}_{i}^{o} - \hat{\theta}_{i}^{ML} \right| \leq 2 \left[\left(L'L \right)^{-1} \right]_{ii} \sigma_{i} \quad w.p. \quad 0.95$$
standard deviation of
noise component dⁱ

• For tunable basis this results holds asymptotically $(T \rightarrow \infty)$ with:

$$L = \left(\frac{\partial F}{\partial \mathcal{G}}\right)_{\mathcal{G} = \mathcal{G}^o}$$

Statistical/parametric approach Model structures: properties

- Model structure choice:
 - "basis" type σ_i
 - Number r of "basis"
 - Number n of regressors

Problem: "curse of dimensionality"

The number **r** of basis needed to obtain "accurate" approximation of **f**^o **grows** with the dimension **n** of regressor space

in the case of "fixed" basis: exponential growth

Statistical/parametric approach Model structures: properties

Using tunable basis:

- Under suitable regularity conditions on the function to approximate, the number of parameters r required to obtain "accurate" models grows linearly with n
- Estimation of θ requires to solve a non-convex minimization problem

Trapping in local minima

Statistical/parametric approach Modeling errors

Basic to the statistical/parametric approach is the assumption of no modeling error

 $\exists \, \mathcal{G}^o : f^o = f(w, \mathcal{G}^o)$

 $d^{t} = \tilde{y}^{t} - f(w, \theta^{o})$

is a stochastic variable independent of input u

Statistical/parametric approach Modeling errors

Searches for the functional form of unknown f^o are time consuming and lead to approximate model structures

d^{*t*} is no more a stochastic variable independent of u

Statistical estimation in presence of modeling errors is a hard problem

Set Membership approach:

- > no assumption on the functional form of f^{o}
- > no statistical assumption on d^{t}

SM assumptions:

• on system:
$$f^{\circ} \in F(\gamma) = \left\{ f \in C^{1} : \left\| f'(w) \right\|_{2} \le \gamma, \forall w \in W \right\}$$

bounded set $\in \mathbb{R}^{n}$

> on noise:
$$d^{t} \leq \varepsilon^{t} + \gamma \delta^{t}, t = 1, ..., T$$

Significant improvements obtained by:

- > use of "local" bound $\left\|f'(w)\right\|_2 \leq \gamma(w)$
- scaling of regressors w to adapt to data

All information (prior and data) are summarized in the Feasible Systems Set:

$$FSS^{T} = \left\{ f \in F(\gamma) : | \tilde{y}^{t} - f(\tilde{w}^{t}) | \leq \varepsilon^{t} + \gamma \delta^{t}, \quad t = 1, \cdots, T \right\}$$

- FSS^T is the set of all systems $\in F(\gamma)$ that could have generated the data
- Inference algorithm
 maps all information into estimated inference:

$$\hat{I} = \Phi(FSS^T) \tilde{-} I(f^o, w^T)$$

Set Membership approach Prior assumptions validation

- Prior assumptions are invalidated by data if FSS^T is empty
- Prior assumptions are considered validated if $FSS^T \neq \emptyset$
- The fact that the priors are validated by using the present data does not exclude that they may be invalidated by future data

(Popper, "Conjectures and Refutations: the Growth of Scientific Knowledge", 1969)

Set Membership approach Prior assumptions validation

■ Define:
$$\overline{f}(w) = \min_{t=1,..,T-1} (\overline{h}^t + \gamma || w - \widetilde{w}^t ||_2)$$

$$\underline{f}(w) = \max_{t=1,..,T-1} (\underline{h}^t + \gamma || w - \widetilde{w}^t ||_2)$$

$$\overline{h}^t = \widetilde{y}^{t+1} + \varepsilon^t + \gamma \delta^t, \ \underline{h}^t = \widetilde{y}^{t+1} - \varepsilon^t - \gamma \delta^t$$

Theorem:

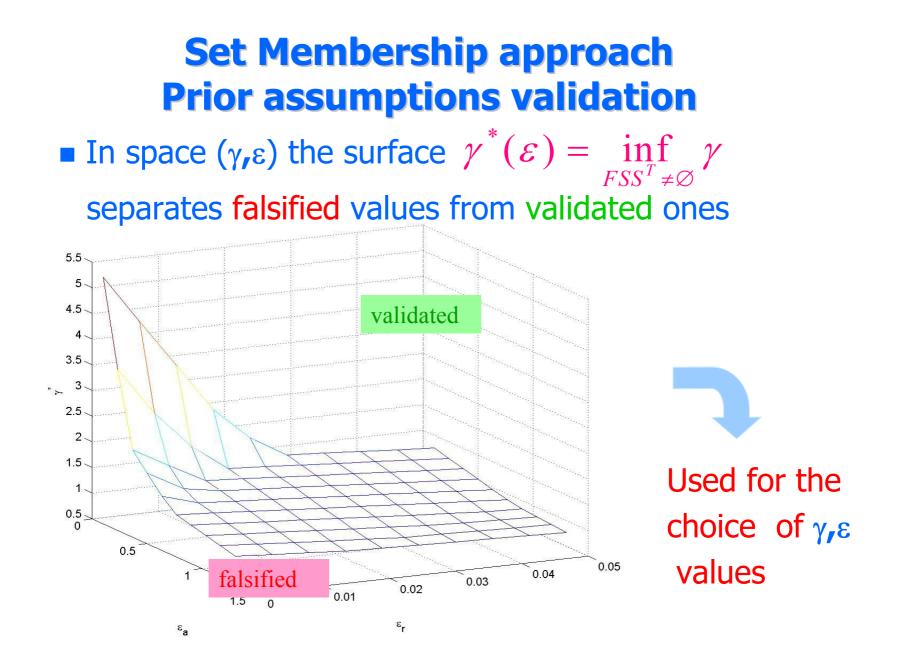
Conditions for assumptions to be validated are:

> necessary:

$$\overline{f}(\tilde{w}^t) \ge \underline{h}^t, t = 1, ..., T$$

sufficient:

 $\overline{f}(\tilde{w}^t) > \underline{h}^t, t = 1, ..., T$



Set Membership approach Error and optimality concepts

Local) Inference error:

 $E(\hat{I}) = E[\Phi(FSS^{T})] = \sup_{f \in FSS^{T}} \sup_{|w^{T} - \tilde{w}^{T}| \le \varepsilon^{T} + \gamma \delta^{T}} \|\Phi(FSS^{T}) - I(f, w^{T})\|$

- An algorithm Φ^* is optimal if:
 $E[\Phi^*(FSS^T)] = \inf_{\Phi} E[\Phi(FSS^T)] = r \quad \forall FSS^T$ *r*: (local) radius of information
- An algorithm Φ^{α} is α -optimal if:

 $E[\Phi^{\alpha}(FSS^{T})] \leq \alpha \inf_{\Phi} E[\Phi(FSS^{T})] \quad \forall FSS^{T}$

Inference \rightarrow **Identification:** $I(f, w^T) = f$

• Let $|| \mathbf{I}(f, w^T) || = || f ||_p = [\int_W |f(w)|^p dw]^{1/p}$ • Define $f^c(w) = \frac{1}{2} [f(w) + \overline{f}(w)]$

Theorem:

i) The identification algorithm $\Phi^{c}(FSS^{T}) = f^{c}$

is optimal for any L_p norm, $1 \le p \le \infty$

ii) The radius of information *r* is:

$$E[f^c] = r = \frac{1}{2} \|\overline{f} - \underline{f}\|_p$$

Inference \longrightarrow **Prediction:** $I(f, w^T) = f(w^T)$

Let:

* || $\mathbf{I}(f, w^T)$ ||=| $f(w^T)$ | * $B_{\delta}(\tilde{w}^t) = \left\{ w \in W : \left\| w - \tilde{w}^t \right\|_2 \le \delta^t \right\}$

Inference \longrightarrow **Prediction:** $I(f, w^T) = f(w^T)$

Theorem:

i) The prediction algorithm $\Phi^c(FSS^T) = f^c(\tilde{w}^T)$ is 2-optimal, with prediction error bounded by: $E\left[\Phi^{c}\left(FSS^{T}\right)\right] \leq \frac{1}{2}\left[\overline{f}(\tilde{w}^{T}) - \underline{f}(\tilde{w}^{T})\right] + \gamma\delta^{T}$ *ii*) If $B_{\delta}(\tilde{w}^T) \subset C^T \cap \overline{C}^T$, then prediction $\hat{y}^{T+1} = f^c(\tilde{w}^T)$ is optimal and the radius of information is: $E\left[\Phi^{c}\right] = r = \frac{1}{2}\left[\overline{f}(\tilde{w}^{T}) - \underline{f}(\tilde{w}^{T})\right] + \gamma\delta^{T}$

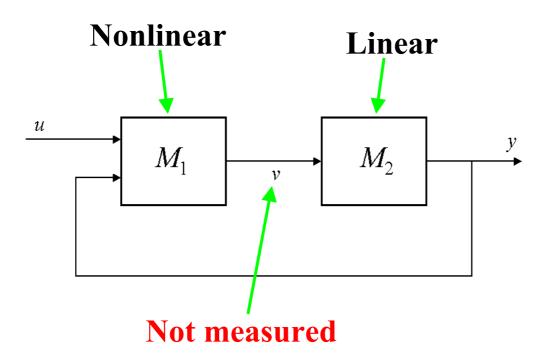
Structured identification

In the case of large dimension of regressor space it is often very hard to obtain satisfactory modeling accuracy.

Structured (block-oriented) identification

 The high-dimensional problem is reduced to the identification of lower dimensional subsystems and to the estimation of their interactions

Structured identification



Typical cases: Wiener, Hammerstein and Lur'e systems

Structured identification

Iterative identification algorithm:

- Initialisation: get an initial guess $M_2^{(0)}$ of M_2
- Step k:
- 1) Compute $v^{(k)}$ such that $M_2^{(k-1)}[v^{(k)}]=y$
- 2) Identify $M_1^{(k)}$ using *u* and *y* as inputs, $v^{(k)}$ as output
- 3) Identify $M_2^{(k)}$ using $v^{(k)} = M_2^{(k)}[u, y]$ as input, y as output and return to step 1)

Key feature:

The identification error is non-increasing for increasing iteration.

The usual approach is to look for model validity

Model invalidity only can be surely asserted, when the model does not explain the measured data

$$|\tilde{y}^{t} - y_{M}^{t}| > expected noise size$$

Infinitely many not-invalidated models can be derived

Even more, infinitely many models exactly explaining the data can be derived

"overfitting" danger

Finding models exactly explaining the data

choose #r of basis functions = #T of measured data

$$L = \begin{bmatrix} \sigma_1(\tilde{w}_1) & \cdots & \sigma_T(\tilde{w}_1) \\ \vdots & \ddots & \vdots \\ \sigma_1(\tilde{w}_T) & \cdots & \sigma_T(\tilde{w}_T) \end{bmatrix} \longrightarrow invertible$$

 $\hat{\mathcal{G}} = (LL)^{-1}L\tilde{Y}$ $\hat{\mathcal{G}} = L\hat{\mathcal{G}} = L(LL)^{-1}L\tilde{Y} = \tilde{Y}$

Example:

$$\tilde{u}^1 = -2 \ \tilde{u}^2 = 0.5 \ \tilde{u}^3 = 0.8 \ \tilde{u}^4 = -0.5 \quad \leftarrow input$$

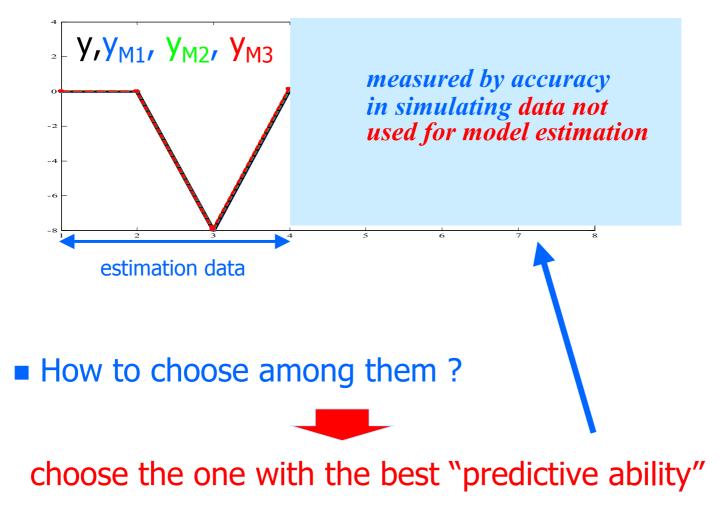
 $\tilde{y}^1 = 0 \ \tilde{y}^2 = 1 \ \tilde{y}^3 = -8 \ \tilde{y}^4 = 0.125 \quad \leftarrow output$

 $M_{1}(\mathcal{G}) \Rightarrow y_{M1}^{t+1} = \mathcal{G}_{1}u^{t} + \mathcal{G}_{2}u^{t-1} \qquad \text{candidate} \\ M_{2}(\mathcal{G}) \Rightarrow y_{M2}^{t+1} = \mathcal{G}_{1}u^{t} + \mathcal{G}_{2}(u^{t-1})^{2} \leftarrow \begin{array}{c} \text{model} \\ \text{structures} \end{array} \\ M_{3}(\mathcal{G}) \Rightarrow y_{M3}^{t+1} = \mathcal{G}_{1}u^{t} + \mathcal{G}_{2}(u^{t-1})^{3} \end{array}$

Estimation of M_1, M_2, M_3 $M_{1}(\mathcal{9}) \Rightarrow \begin{array}{c} t=2 \rightarrow \\ t=3 \rightarrow \end{array} \begin{bmatrix} -8 \\ 0.125 \end{bmatrix} = \begin{bmatrix} 0.5 & -2 \\ 0.8 & 0.5 \end{bmatrix} \begin{array}{c} \mathcal{9}_{1} \\ \mathcal{9}_{2} \\ \mathcal{9}_{3} \end{bmatrix} \Rightarrow \begin{bmatrix} \hat{9}_{1} \\ \hat{9}_{1} \\ \hat{9}_{3} \end{bmatrix} = L^{1}Y = \begin{bmatrix} -2.03 \\ 3.49 \end{bmatrix}$ $M_2(\mathcal{G}) \Rightarrow \begin{array}{c} t=2 \rightarrow \begin{bmatrix} -8\\ 0.125 \end{bmatrix} = \begin{bmatrix} 0.5 & -4\\ 0.8 & 0.25 \end{bmatrix} \begin{array}{c} \mathcal{G}_1\\ \mathcal{G}_2\\ \mathcal{G}_3 \end{bmatrix} \Rightarrow \begin{array}{c} \mathcal{G}_1\\ \mathcal{G}_2\\ \mathcal{G}_3 \end{bmatrix} = L^1 Y = \begin{bmatrix} 0.81\\ -2.10 \end{bmatrix}$ $M_3(\mathcal{G}) \Rightarrow \begin{array}{c} t=2 \rightarrow \begin{bmatrix} -8\\ 0.125 \end{bmatrix} = \begin{bmatrix} 0.5 & -8\\ 0.8 & 0.125 \end{bmatrix} \left[\begin{array}{c} \mathcal{G}_1\\ \mathcal{G}_2 \end{bmatrix} \right] \Rightarrow \begin{array}{c} \mathcal{G}_1\\ \mathcal{G}_2 \end{bmatrix} = L^1 Y = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

Model quality evaluation

All models M_1 , M_2 , M_3 explain exactly the given data y



Model quality evaluation

Several indexes have been proposed for estimating the predictive ability of models:

> $FPE = R(\hat{\vartheta}) \frac{T+n}{T-n}$ > $AIC = \ln R(\hat{\vartheta}) + \frac{2n}{T}$ > $BIC = \ln R(\hat{\vartheta}) + \frac{n\ln T}{T}$

T:number of data $n:number of parameters \mathcal{G}$ $R(\theta) = \frac{1}{T} [Y - L\mathcal{G}]' [Y - L\mathcal{G}]$

They provide quite crude approximations, especially for nonlinear systems

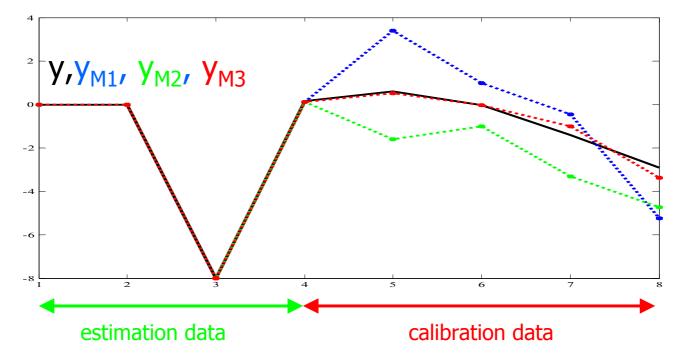
- A simple but effective approach: splitting of data
 - *estimation data: estimate candidate models* $M_{i'}$, *i=1,..,m*
 - calibration data: choose the best one among M_i

Model quality evaluation

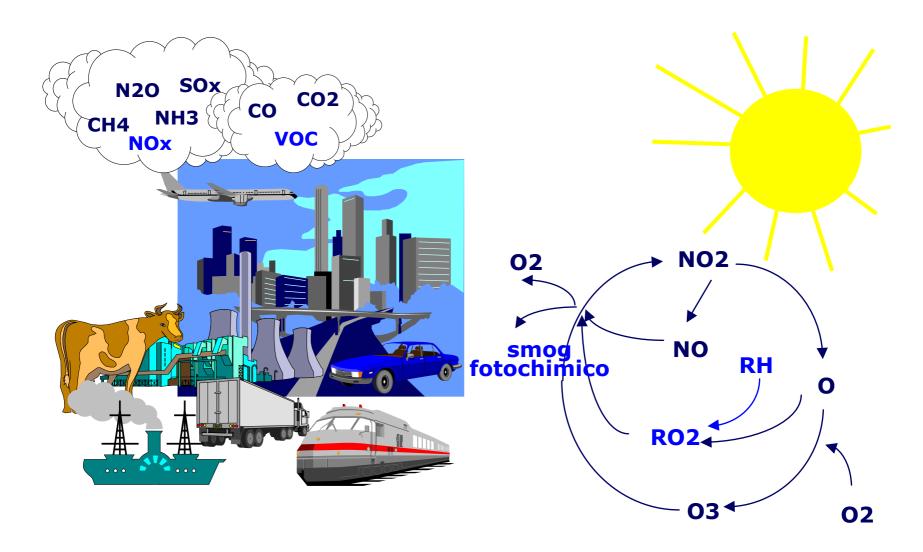
• Best model among candidate ones M_i

minimum simulation error on the "calibration" data

• Example: M_3 is the best one among M_1 , M_2 , M_3



- Prediction of atmospheric pollution
- Simulation of dam crest dynamics
- Identification of vehicles with controlled suspensions

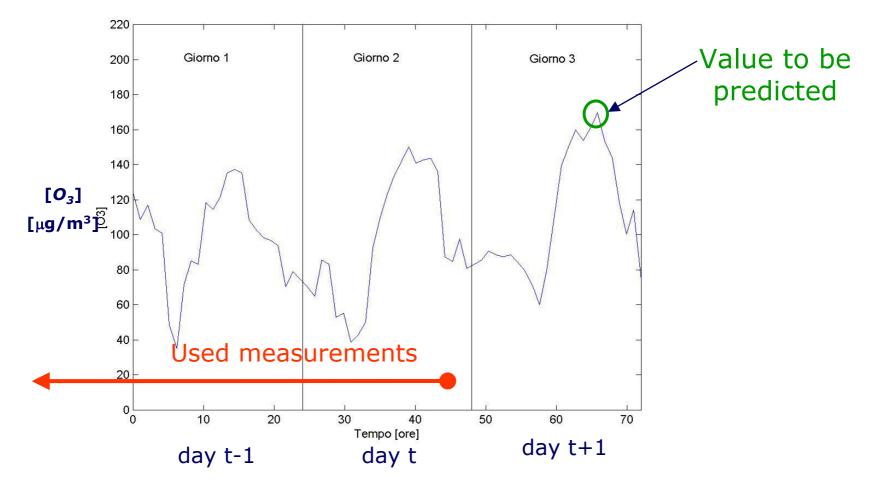


- Combustion processes and high solar radiation cause high tropospheric ozone concentrations
- Prediction of ozone concentrations is important for authorities in charge of pollution control and prevention
- Studies in the literature show that physical models are not able to reliably forecast the links between precursor emissions (No_x, VOC), methereological conditions and ozone concentrations

Sillman "The relation between ozone, No_x and hydrocarbons", Atmos. Environ., 1999

>Jenkin-Clemitshaw "Ozone and other photochemical polluttants: chemical processes governing their formation", Atmos. Environ., 1999

typical data at Broletto (Bs)



Structure of used models:

$$y^{t+1} = f^{o}(w^{t})$$
$$w^{t} = [y^{t} u_{1}^{t} u_{2}^{t} u_{3}^{t} u_{4}^{t}]$$

- y_1^t : max O₃ concentration at day t u_1^t : mean NO₂ concentration at 4-8 pm of day t
- \mathcal{U}_{2}^{t} : mean O₃ concentration at 4-8 pm of day t
- \mathcal{U}_3' : max temperature at day t
- $-\mathcal{U}_4^{\prime}$: forecast of max temperature at day t+1

- Prediction methods tested:
 - **> PERS:** $y^{t+1} = y^t$
 - > **ARCX:** periodic ARX
 - > NN: sigmoidal neural net
 - **NF:** neuro-fuzzy
 - NSM: nonlinear set membership
- Hourly data measured at Brescia center:
 - 1995-1998: estimation data set
 - 1999: calibration data set
 - > 2000-2001: testing data set

Indexes measuring the ability to predict concentrations exceeding a given threshold:

	obse	total		
predicted	yes	no	ισιαι	
yes	а	f – a	f	
no	m - a	N + a – m – f	N – f	
total	m	N - m	Ν	

- ✓ fraction of Correct Predictions: CP=(a/m)%
- ✓ fraction of False Alarms: FA=(1-a/f)%
- ✓ Success index: SI=[(a/m)+((N+a-m-f)/(N-m))-1]%

European Environmental Agency, Tech. Report 9, 1998

Calibration data set: m=63 exceeded thresholds

	PERS	ARCX	NN	NF	NSM
СР	65.1	61.9	69.8	63.5	<mark>71</mark>
FA	33.9	<mark>25</mark>	27.9	25.9	27.4
SI	47.6	51.1	<mark>55.7</mark>	51.8	51.2

Testing data set: m=39 exceeded thresholds

	PERS	ARCX	NN	NF	NSM
СР	41.5	35.9	53.8	66.7	<mark>71.8</mark>
FA	57.5	51.7	<mark>40</mark>	44.7	44
SI	34.4	31.3	49.6	60.2	<mark>63.5</mark>

• Model to simulate the crest displacement of the dam as function of:

➤ water level

> concrete temperature

➢ air temperature

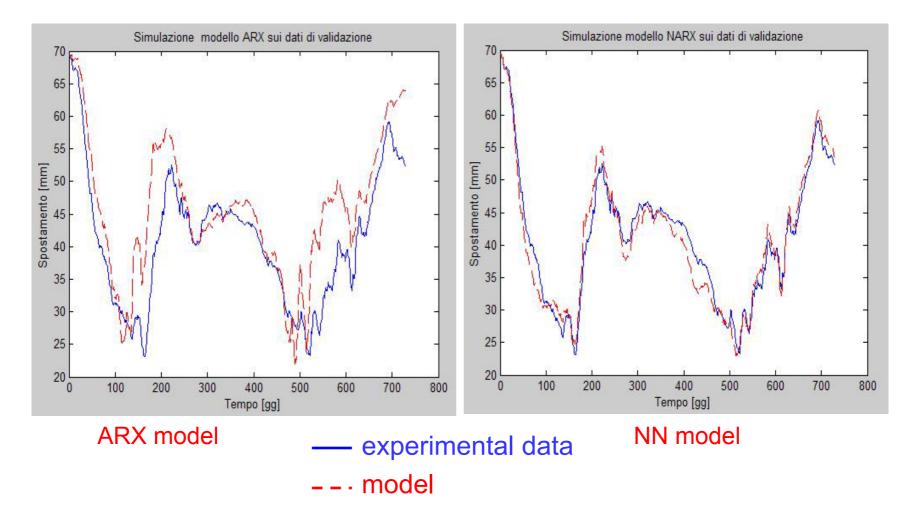
- Daily data available in period 1992-2000
- Difficulties in deriving reliable physical models
- Models tested: ARX, NN, NSM

- Structure of used models:
- $y^{t+1} = f^o(w^t)$

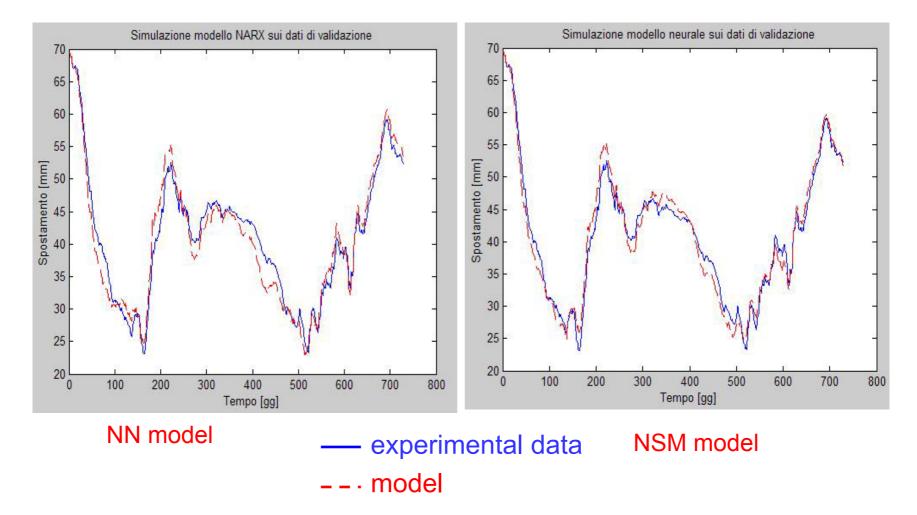
 $w^{t} = [y^{t} y^{t-1} u_{1}^{t+1} u_{1}^{t} u_{1}^{t-1} u_{2}^{t+1} u_{2}^{t} u_{3}^{t+1} u_{3}^{t}]$

- y_t^t : crest displacement at day t
- u_1^{\prime} : water level at day t
- \mathcal{U}_2^{I} : concrete temperature at day t
- \mathcal{U}_3^{\prime} : mean air temperature at day t
- Daily data:
 - 1992-1996: estimation data set
 - 1997-1998: calibration data set
 - > **1999-2000:** testing data set

• Simulation results on the testing data set:



• Simulation results on the testing data set:



Identification of vehicles with controlled suspensions

GOAL: Derive a model for simulation of chassis and wheels accelerations as function of road profile and damper control

USE: Virtual design and tuning of Continuous Damping Control systems

Experimental setting

 C-segment prototype vehicle with controlled dampers and CDC-Skyhook (Continuous Damping Control system).

• Measurements are performed on a four-poster test bench of FIAT-Elasis Research Center.

Experimental setting

Road profiles:

- Random: random road.
- English Track: road with irregularly spaced holes and bumps.
- Short Back: impulse road.
- Motorway: level road.
- Pavé track: road with small amplitude irregularities.
- Drain well: negative impulse road.

Note: The road profiles are symmetric (left=right).

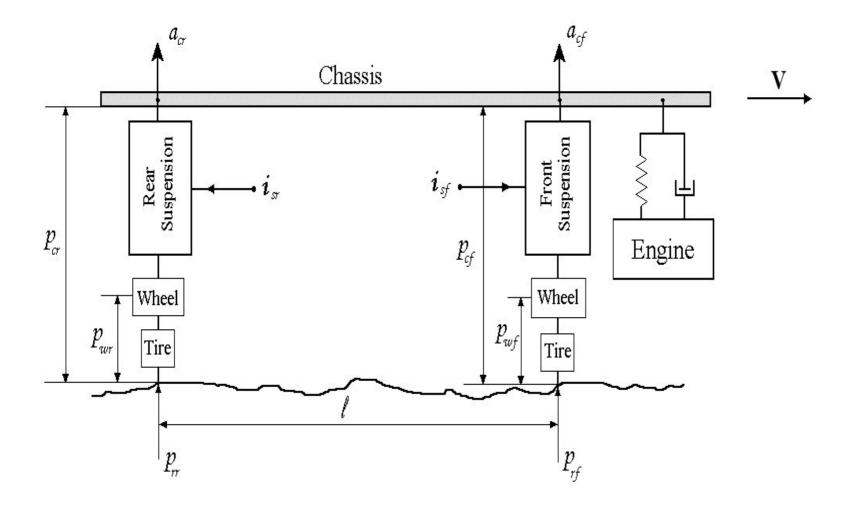
Experimental setting

Data set: 93184 data, collected with a sampling frequency of 512 Hz, partitioned as follows:

- Estimation data set: 0-5 seconds of each acquisition.
- Calibration data set: 5-7 seconds of each acquisition.
- Testing set: 7-14 seconds of each acquisition.

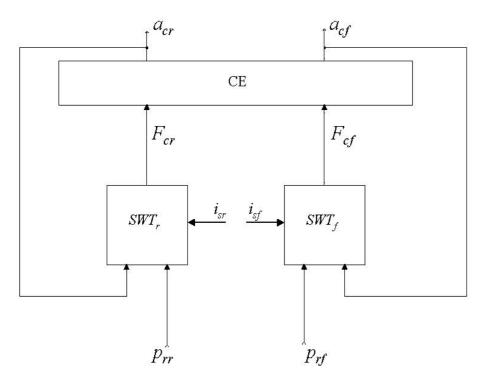
Structure of vehicles vertical dynamics

Since the road profiles are symmetric, a Half-car model has been considered:



Structured Identification of vehicles vertical dynamics

Structure decomposition:



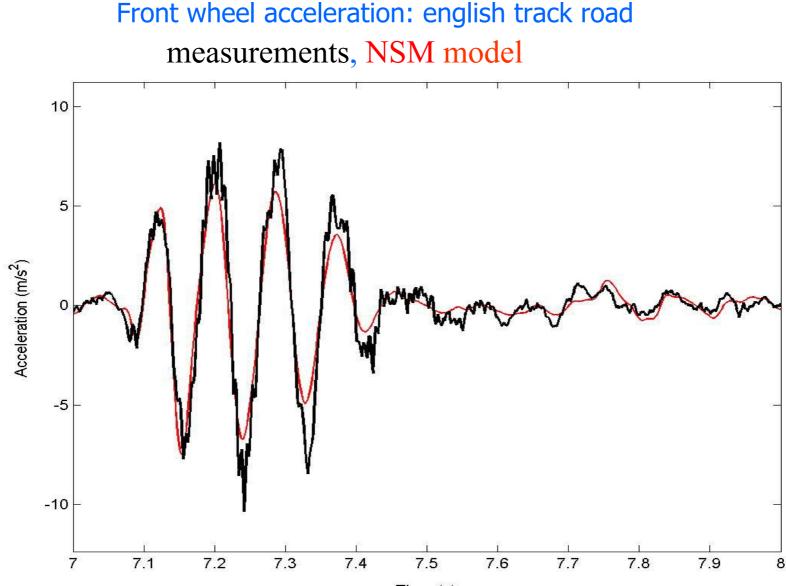
- CE: chassis + engine
- SWT: suspension + wheel + tire

Measured variables:

- p_{rf} and p_{rr} : front and rear road profiles.
- *i_{sf}* and *i_{sr}*: control currents of front and rear suspensions.
- a_{cf} and a_{cr} : front and rear chassis vertical accelerations.

Note: F_{cf} and F_{cr} are not measured.

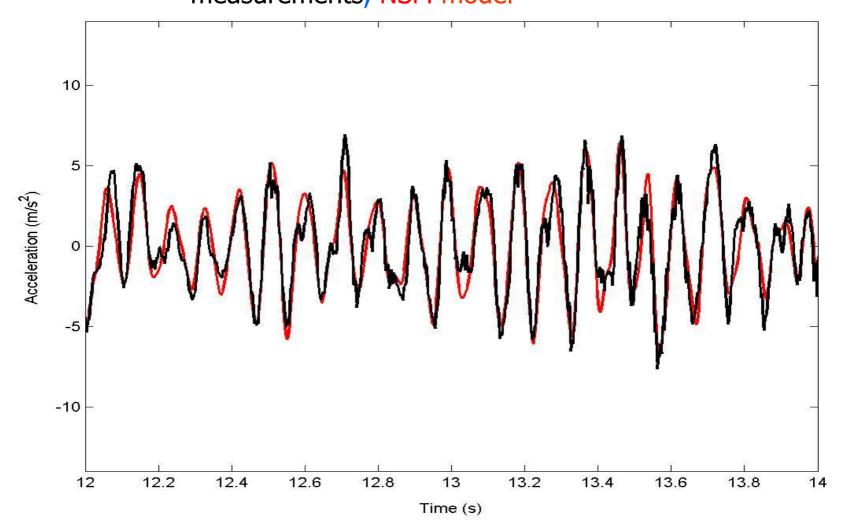
Results on testing set of NSM model



Time (s)

Results on testing set of NSM model

Chassis front accelerations: random road measurements, NSM model



Results on testing set of NSM model

Chassis rear accelerations: random road

measurements, NSM model. 15 10 5 Acceleration (m/s²) 0 -5 -10 -15 12 12.2 12.4 12.6 12.8 13 13.2 13.6 13.4 13.8 14

Time (s)

Comparison with physical model

Chassis front accelerations: random road measurements, NSM model, physical model

